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I’d appreciate feedback on any of this work, but I’m especially curious about the following:

• What would make this tool more useful for you to use in your own work?

• What would be the (computational? user interface?) barrier for you to use this tool?

We built a classifier using a supervised learning strategy, with ground truth annotations on a subset of 
image data. Moving forward, we are interested in exploring other learning strategies, including self-su-
pervised learning, to eliminate the need for labor-intensive manual annotation and to facilitate the ex-
tension of this work to other imaging modalities (e.g., phase contrast, DIC, fluorescence) or other spe-
cies.

Key questions:

1. Could we train a robust classifier to recognize developmental stages of nematode embryos 
irrespective of embryo orientation, and with varying brightfield input data?

2.Could we teach our classifier to identify embryonic lethality or death during development?

3.Do we need to train new models to accurately classify other nematode species beyond C. elegans?

We describe here the generation of a trained classifier that can be used to identify nematode embryo 
stages from microscopy time-course data sets. We hope this tool will be useful to biologists using C. 
elegans or other free-living nematode species to interrogate embryonic development, reproductive 
success, or tracking developmental outcomes following perturbations. 

This is the initial version of this tool, which will allow the user to go from imaging nematode embryos to 
classifying developmental stages and quantifying the frequency of successful versus unsuccessful de-
velopmental outcomes. We are interested in expanding the functionality of this resource in future ver-
sions. We welcome your input and would be excited to incorporate user feedback to improve 
the functionality of our classifier. 

1. Could we train a robust classifier to recognize developmental stages of nematode embryos 
irrespective of embryo orientation, and with varying brightfield input data?

Mostly YES!  We needed a post-processing filtration step to increase accuracy. Morphogenesis 
stages are HARD (especially comma), but if we bin bean and comma together, we get robust 
results.

2.Could we teach our classifier to identify embryonic lethality or death during development?

This worked at about ~80% accuracy, but might be improved by incorporating images of 
embryonic lethality from other perturbations beyond osmotic stress (e.g., mutant alleles, RNAi, 
etc).

3.Do we need to train new models to accurately classify other nematode species beyond C. elegans?

Yes! Our classifier was pretty good at predicting early and late developmental events without 
re-training (e.g., proliferation and fold and hatch, but performance was enhanced by adding in 
images from the other species.

During embryogenesis, multicellular organisms pass through discrete developmental stages, including fertilization, 
cleavage, morphogenesis, and organogenesis, ultimately hatching into their environment. Animal development is 
characterized by sets of shared and species-specific features. For example, following fertilization, most animal 
embryos undergo a series of rapid cell divisions. At some point during this cleavage period, cells undergo a suite of 
morphogenetic changes as embryo patterning results in tissue-layer organization through the process of 
gastrulation. While embryos from many different organisms may share similar-looking cleavage stages, within 
specific lineages there are often unique morphologies characteristic of distinct taxonomic groups — animal 
embryos that look similar at cleavage stages might look very different during gastrulation. These species-specific 
differences only compound as development continues. Thus, there is a need for automated tools to classify 
key embryonic stages to unlock high-throughput approaches to developmental biology.

Here, we selected nematode embryogenesis for our first effort at building a classifier using deep learning methods 
based on label-free imaging. Free-living nematodes, including the well studied Caenorhabditis elegans, undergo 
rapid development passing through proliferation, bean, comma, fold stages until they hatch about ~14 hours after 
fertization, making them useful for this effort.   

Smart microscopy reduces collection of bad 
data. 

Overview of experimental and computational 
workflow

Representative images from an osmotic stress 
high-throughput experiment.  Single images are 
shown for every 10th frame in a time series. Increasing osmotic stress causes develop-

mental delays and leads to higher rates of 
embryonic lethality.A
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Ground truth training of 7 classes.  We annotated images identifying key frames of transition states between 
developmental stages (Sulston, et al. 1983), including training data of embryos in both lateral and dorso-ven-
tral orientations. White and yellow arrows indicate features of bean and comma stages, respectively.
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Classifier errors can be corrected with post-processing filtration. 
(A,B) Single-frame examples of representative traces shown on the right 
(A′, B′). Blue traces represent classification and orange traces represent 
corrected output post-filtration. (C) Confusion matrix based on post-pro-
cessed classification compared to ground truth.
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Classification accuracy in staging is improved by adding ground truth annotations 
from other species. (A) Evolutionary relationship of the three rhabditid nematodes imaged. 
(B) Representative frames of timelapse imaging for each species. (C) Confusion matrices 
based on model trained with only C. elegans images (left) and with images from the other 
species (right).
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that encoded dynamics of input data when training a Res-
Net-18 CNN using the standard deviation and moving mean 
of a five frame window improved classification over raw data.
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Our workflow combines smart microscopy with high-throughput imaging, 
segmentation, cropping and key frame annotation to train a classifier

We leverage dynamic information to train a neural 
network to classify developmental stages

Post-processing corrects some classifier errors

Unlocking high-throughput developmental biology through deep learning

We had to re-train models to make them more 
generalizable to other nematode embryos
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A computational pipeline to analyze high-throughput imaging of nematode embryogenesis
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